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Effect of colored noise on networks of nonlinear oscillators
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We discuss noise-induced pattern formation in different two-dimensional networks of nonlinear oscillators,
namely a sequence of biochemical reactions and the Lorenz system. The main focus of the work is on the
dependence of these patterns on the correlation e the coloy of exponentially correlated Gaussian noise.

It is seen that in the nonchaotic case, the homogelteitaverage cluster sizggoes through a minimum with
higher correlation time, while in its chaotic regime the Lorenz system shows a higher degree of synchroniza-
tion when the correlation time of the noise is increased. In order to elucidate the origin of this phenomenon, the
effect of colored noise on the individual oscillator is investigated. It is shown that the specific dependence of
the network’s homogeneity on the noise correlation time arises from an interplay of the collective behavior and
the properties of the single oscillators.
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In models of biological systems, fluctuations are typicallyworks under the influence of noise, this effect may be of
accounted for by white noise. However, for many systemstelevance for applications in life sciences, as it suggests a
white noise is not an accurate approximation of the actuapossible mechanism of pattern regulation.
fluctuations present in the system. In these cases, colored We discuss this effect in two different two-dimensional
noise may provide a more accurate description. As a rulesquare lattices, whose elements consist of diffusively
dynamics on a very large time scaleompared to the time coupled, noisy nonlinear oscillators, namely a system of os-
scale of observation or the system’s characteristic éinare  Cillatory biochemical reactions with backward inhibition, in
ignored when formulating a mathematical model of the systhe following called the Thron systefuf. [10] for the single
tem, while those contributions to the overall dynamics with aoscillator and 11] for a square lattice of coupled oscillatprs
time scalety<< @ are thought of as noigel]. An incomplete
separation of such time scales into long- (@), characteristic o= a —x.

(t~#6), and short (< 6) time constants, respectively, leads UKtz W

to a variety of additional dynamical effects. The existence of

an intermediate regime between long and characteristic time yij =Xi;—Yij »

scales may lead to dynamical bifurcatidi2§. An intermedi-

ate regime between characte.ristic anq short timg sca}les can . K1Zjj

formally be accounted for by introducing correlations in the Zi=Yi~ g .. TEiDF DzkIEN_ (Zu—zj), (1)
noise, i.e., by the use of colored noise. Similar to the case of me =i

dynamical bifurcations, one may expect a very different ef-and the Lorenz systertef. [12] for the single oscillator and
fect of such correlated noise on the observed dynamics ife] for a ring of coupled oscillatoys

comparison to white noise. Recently, the influence of the

noise color on stochastic resonanf@l, on fluctuation- Xii = a(Yi —Xi),

induced transpoift4], on limit cycle and threshold behavior ! o

of individual and coupled oscillatof$—7], and on nonequi- )

librium phase transition§8] has been discussed in several Yij =rXij —Yij —Xijzi; + &; (1) + Dy Z (Y= VYij),
papers. For more details on the effect of noise color on non- kleNjj

linear dynamical systems, sge. .

Here we present a new point of view in this discussion by zjj=Xi;Yij — bz, 2
studying the effect of colored noise on spatiotemporal cluster , . i ,
form)z/itign. Throughout the paper, we copnsider egponentiaII)pOth with 1=i,j=<32. The neighborhood/; consists of the

correlated Gaussian noise as a model for fluctuations. WithifPur nearest neighbors of each element within the square
this model, the term “noise color” denotes the correlation lattice. For our choice of parameters, each uncoupled oscil-

time . It is seen that the homogeneity of pattefos the lator in Egs.(1) and (2) undergoes a Hopf bifurcation at
average cluster sizén a system of coupled nonlinear differ- (2:K,Km)=(0.1,0.001,0.001) fork,=0.46 and g,b)
ential equations strongly depends on the temporal correlatiorr (10,3) atr =24.74, respectively. In the following, we vary
of additive, spatially incoherent noise. For chaotic networksk; andr, keeping the other parameters fixed. In both cases,
an increased correlation timeincreases the homogeneity of the individual oscillators are coupled diffusively in one of
patterns, whereas in the nonchaotic case, a clear minimum tiieir dynamical variables with diffusion constaiis for the

the homogeneity at intermediateis observed. In addition to  Thron system an®, for the Lorenz system. The quantity
being a novel phenomenon in the study of nonlinear net¢;;(t) is spatially incoherent, exponentially correlated addi-
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tive Gaussian noise, generated through an integral algorithm 1(T
[13] using an Ornstein-Uhlenbeck process with Gaussian | = $J
white noise of varianc®. The resulting noise variablg; (t)

has zero mean and the correlation function obeys the equiyhereT is the length of the time series after the initial tran-
tion (&;(t)&;(t"))=D7 'exp(-[t—t'|7""), where r is the  sjents have died off, anl is the number of network ele-
correlation time and 7~ '=o¢? is the variance of the noise. ments. In addition to calculating the inhomogeneity, we de-
Spatial incoherence means that the noise is uncorrelatadrmined the distribution of cluster sizes by applying the
from site to site, i.e.(&;(t)&j,(1))=0. At this point, one  Hoshen-Kopelman algorithm for cluster classificatidi8].
basically has two possibilities to investigate the effect ofThe results of both procedures are in good agreement. Note
noise color in these systems, namely at fixédand at fixed that our means of quantification differ from R¢6], where

D. While the latter leads to the correct white-noise limit, thethe Euclidian distance in phase space has been used to quan-
former procedure, which has also been used in, é@“ tify synchronization. Keeping in mind that we discuss as-
allows for approximately keeping the noise intensity constanpects of spatiotemporal pattern formation, a quantification in
(for finite 7). We believe that this case is the relevant situaJust one dynamical variable seems more natural to us. We

tion for biological systems. In order to compare with otherchecked, however, that qualitatively the same results are ob-
theoretical work. however. the case of constBnts more  tained when one discusses synchronization, rather than inho-

important. mogeneity, as a function of the color. To calculate the noise-

Equationg1) and(2) were numerically integrated using a md_uced deviation fr(_)m the d_eterm|n|st|c I|m|t-cygle
Heun algorithm[7] with a step sizeAt=10"2 t.u. (time trajectory for one oscillator, we introduce the following

1
dt{ﬁ 2 & (@amz)?), )

0 ij

units). Periodic boundary conditions were applied for bothquam'ty:

networks. The choice of the diffusively coupled dynamical At 1

variable has been made mainly for the sake of comparison A= o D [Uge ) —Usd D) (4
with previous work(i.e., Ref.[6] for the Lorenz system and A t=0 M

Ref.[11] for the Thron system However, we checked that a
coupling in a different variable leads to the same effect.  Where| | represents the Euclidian distance between the de-
We chose these two systems in order to give one exampl@rministic (Ug) and stochastic state vectons() at timet.
with explicit biochemical implications, and another that is The distance is zero at=0. The bracketg ), denote aver-
somewhat standard in nonlinear dynamics in addition to havaging overM different noise realizations for the fixed time
ing a strong physical background in hydrodynamics and laseftervalt, . At is the integration step size (> At). Varying
physics. Additionally, we performed the same analysis forta OVer a considerable range leads to the same qualitative
the Sel’kov model of glycolysi§14], for the Lorenz system results for the dependence on even though the absolute
both being in a regime of regular limit-cycle oscillatiofet values of_A may differ substantlglly. BasicallyA quar_1t|f|es
r>312), and for networks of driven double-well Duffing os- h€ area in phase space accessible for the system in the pres-
cillators, of driven excitable oscillatofa 5], and of(chaotig ~ €NC€ Of noise at a given noise intensity and noise color. An

Rossler oscillators. Foo?=const, they all follow the same increase ofA with = shows that a larger part of the phase

scheme of response to noise color. On this basis, we are |epace 1S mapped out by the trajectories within a fixed time

to the conjecture that at fixed? the destructive effect with intervalty .

increasing noise color on nonlinear networks in their noncha Itis instructive to compare the dependence observed in
9 the numerical simulations of the two systems, namely the

ot!c regime, as well as th.z clonstt)ructweblmfluencgblm th? Chaf gularly oscillating Thron system and the Lorenz system in
otic case, represent a widely observable, possibly UNIVersg” chagtic regime. To achieve a certain degree of compara-

phenomenon not restricted to some particular class of syssjjiry the noise correlation time is measured in units of the
tems. Our conjecture is supported by the plausibility arguyominating frequencyy in the power spectrum of the indi-
ments for the individual oscillator given below. We believe \iqual oscillator. In the case of the Thron system, one has
that this effect is capable of providing insight into pattern-,, —0.095 (t.u.)?, whereas for the Lorenz system one finds
formation processes in biological systems: On the basis OLO: 1.30 (tu)™
the view towards noise presented in the introductory part of For the Thron system, the results reported in [REf] are
this paper, it can be argued that colored noise should be thglly reproduced. However, in contrast to their claim, our
rule rather than an exception in a biological system, whergtudy of the spectrum of Lyapunov exponents for the coupled
dynamical processes on all time scales contribute more asscillators indicates that the time development is still regular,
less directly to the observed dynamiésr a specific biologi- rather than chaotic. Indeed, calculation of the largest
cal example, sefl6]). By discussing explicitly the influence Lyapunov exponents of the deterministic networks revealed a
of colored noise on a network of biologically motivated os- periodic, nonchaotic behavior for the Thron network for any
cillators such as the Thron system, we provide a frameworkhoice ofD,, k;>0.46, and a chaotic behavior, as it should
for discussion of colored noise in life sciences. be, for the Lorenz network fob,<0.16 withr>26.

The average synchronization between nearest neighbors is The central result of our investigation is given in Fig. 1.
quantified using an inhomogeneity measuféd 7], which is  There the inhomogeneity{Eq. (3)] is shown as a function of
calculated in the following way: the noise correlation time. While the behavior is qualita-
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0.034 (a) (b)
FIG. 1. The inhomogeneity [Eg. (3)] as a
function of v, for different values of the cou-
pling strengthD and ¢ are held constant in the
first and second column, respectivelg,b) Thron
system,a=0.10, k;=0.49, K=K ,=0.001, v,
=0.095 (t.u.y?!; D, is varied from 0.6(—) to
1.8 (- --) in steps of 0.3(c,d Chaotic Lorenz
system, =10, b=%, r=28, ¢?=1.0, v,
=1.30 (tu) ™ D, is varied from 0.15—) via
0.17(- - -), 0.20 (---), 0.25 (--), to 0.30 (-
-). (8 D=0.02, (b) ¢?=0.02, (c) D=1.0, (d)
02=1.0. The integration time wa$= 2500 t.u.
with a transient of 100 t.u. Five realizations have
been performed, each time using a different se-
quence of the attractor as well as different sets of
random numbers for calculating the noise ampli-
tudes. Error bars denote standard deviations.

0.02
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tively the same aD=const[Figs. Xa) and 1c)], we see Wwork [Figs. Xa@-1(c)], whereas it increases with in the
significant differences at?= const[Figs. 4b) and Xd)]. For ~ Lorenz caséFigs. 1d)-1(f)].
the Thron systeml, shows a global maximum at some inter-  Some insight into the systematics of the functigm) is
mediater. In contrast, an overall decrease in a relevant regained when one compares the behavior seen in K. 1
gime of 7 is observed for the chaotic Lorenz system. In bothwith the corresponding curve for the Lorenz system while
cases, the effect is diminished when the coupling is invarying the bifurcation parameterFig. 3). At values below
creased. For the Lorenz case, it is seen that an increase of tttee Hopf bifurcationr =24.74, one observes an increasd of
coupling constant fronD,=0.15 to 0.25 is sufficient to al- for 7v,<<0.1, similar to that of the Thron system. However,
most fully eliminate the dependence of the inhomogeneity orin the chaotic regime of the network % 26), this behavior
the color parameter. Our findings for the Lorenz system are changes drastically, and one regains the functigr) from
in agreement with those discussed [i6] for the one- Fig. 1(d), with precisely the opposite global properties to that
dimensional case. of the Thron system. In order to understand the above phe-
In Fig. 2, typical snapshots of the two systems are showmomena, it is worthwhile to look at the behavior of the indi-
for different values ofr. The effect of varyingr on the vidual oscillator under the influence of colored noise. It has
formation of patterns is clearly seen. The typical cluster sizédbeen shown if{19] that the effect of noise on limit-cycle
shows a clear minimum at intermediatdor the Thron net- oscillations depends on the phase of the oscillation.

FIG. 2. Snapshots of the networks of>332
coupled Thron and Lorenz oscillators at different
values ofr keepingo?=const. Shown are the
variables. (a)—(c) The Thron system atry,
=0.01,0.1,1,0?=0.02,D,=0.6.(d)—(f) The Lo-
renz system atrv,=0.01,0.1,5, 0°=1.0, D,
=0.15. Other parameters are the same as in
Fig. 1.
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FIG. 3. The inhomogeneityas a function ofrv for the Lorenz
system at different values of while keepings? constant. From top 10 . . .
to bottom:r=28, r=27, r=26, r=25, r=24.5, andr=20; D, 0.001 0.01 0.1 1.0
=0.15. Other parameters are the same as in Rid). 1 TV,

. . . . FIG. 4. The average distancde[Eq. (4)] between the perturbed
To quantify the perturbation of a trajectory as a funCtlonand unperturbed phase-space trajectories of the individual oscillator

of o and 7, the_ average distanck [Eq. (4)] betwe_en the as a function ofrv, for different values ofr?. (a) Thron systemo?
unpertur_bed trajectory in phase space e_md the trajectory URs \aried from 0.01 (~--) via 0.05 (--), 0.1 (- - -), 0.5(- - -), to 1.0
der the influence of noise is applied. Figureég)4and 4b) () 't —10.27 tu.,M=10" (b) Chaotic Lorenz systems? is
showA as a function of the correlation timefor the Thron  yaried from 0.5 (---) via 1.0 (--), 1.5 (---), 2.0 (- - -), to 2.5
system and the chaotic Lorenz system, respectively. (—), t,=5.0 tu., M=10" Other oscillator parameters are the
Quite remarkably, on the level of the individual oscillator, same as in Fig. 1.
no fundamental difference between the chaotic Lorenz sys-
tem and the oscillatory Thron system is observed. The dif- . , . .
ference between the curves in Figé)land 1d) thus has to interval As exists, Wh.en the system’s traj_ectory is perturped
be related either to a fully collective effect or to the interplay MOSt Severely by noise. For colored noise, this results in a
between the collective and the single-oscillator response tBMe scale matching betweenand As. The position of the
colored noise. For the case of the chaotic Lorenz oscillatofM@ximum is given to a good approximation bjs™t~1.
this interplay can partially be understood when one compares Concluding, in the present paper it has been shown how
the 7 dependence of the average distancom Fig. 4 with ~ patterns in different two-dimensional networks of nonlinear
the functionl () from Fig. 1. On the one hand, the diffusive oscillators depend on the correlation time of external noise
coupling immediately exploits angnoise-inducejifreedom  sources. All systems we investigated follow a characteristic
in the choice of the phase-plane trajectory, to synchronizecheme of response to colored noise: chaotic oscillations
with the neighboring oscillators. This is a collective effect, aslead to a decrease, regular oscillations lead to a maximum of
it involves nearest-neighbor considerations and, clearly, it rethe pattern’s inhomogeneity at intermediateAs soon as
duces the inhomogeneity. While for sufficiently large noiseone accepts that a biological system itself may serve as the
intensity this effect basically can be found for any value ofsource of noise, e.g., via processes at faster time scales than
the color parameter, owing to the properties of theingle  the characteristic time of the studied system, colored noise
oscillator shown in Fig. 4, this mechanism of synchroniza-has to be regarded as a frequent phenomenon in biological
tion is more relevant at higher, resulting in a decrease of systems. It is by now well established that noise is function-
the inhomogeneity as a function ofr. This collective effect ally exploited in naturésee, e.g.[20]). In a similar way, the
is responsible for the global tendency Idfr) to display an regulation of patterns by noise color, as reported here, could
overall decrease. On the other hand, the contribution of thave a role in biological systems. Following this line of
individual oscillator tends to increase the inhomogeneity ofthought, one is led to a new view towards aspects of pattern
the network, as its phase-space trajectory is less localized &drmation(e.g., animal coating on the basis of a biochemical
higher 7 leading to the observed local maximum aroundswitch) and developmental biology.
Tvo=1.0. Several open questions remain. It has to be studied in
For the Thron network, the position of the maximum in more detail how coupling strength and noise amplitude in-
Fig. 1(b) could be estimated by performing a similar analysisfluence this behavior. In addition, it would be worthwhile to
to the one in[19]. Within a single oscillation, a small time systematically discuss the same effect in a network with an
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external periodic stimulus. Previous work indicates that thenoise, a system displaying chaotic spatiotemporal dynamics
noise correlation parameter in such a driven network has ahould give a very different response from that for a system
strong effect on the network’s synchronizati@t]. with a regular behavior masked by an additiofiaterna)
Furthermore, the phenomenon reported here may provideoise. This approach, addressing the analysis of experimental
a method for distinguishing spatiotemporal chaos fromdata rather than the conceptual understanding of pattern for-
(high-dimensional noise. When probed by external colored mation, needs further theoretical investigation.
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