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Effect of colored noise on networks of nonlinear oscillators
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We discuss noise-induced pattern formation in different two-dimensional networks of nonlinear oscillators,
namely a sequence of biochemical reactions and the Lorenz system. The main focus of the work is on the
dependence of these patterns on the correlation time~i.e., the color! of exponentially correlated Gaussian noise.
It is seen that in the nonchaotic case, the homogeneity~or average cluster size! goes through a minimum with
higher correlation time, while in its chaotic regime the Lorenz system shows a higher degree of synchroniza-
tion when the correlation time of the noise is increased. In order to elucidate the origin of this phenomenon, the
effect of colored noise on the individual oscillator is investigated. It is shown that the specific dependence of
the network’s homogeneity on the noise correlation time arises from an interplay of the collective behavior and
the properties of the single oscillators.
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In models of biological systems, fluctuations are typica
accounted for by white noise. However, for many system
white noise is not an accurate approximation of the ac
fluctuations present in the system. In these cases, col
noise may provide a more accurate description. As a r
dynamics on a very large time scale~compared to the time
scale of observation or the system’s characteristic timeu) are
ignored when formulating a mathematical model of the s
tem, while those contributions to the overall dynamics with
time scaletN!u are thought of as noise@1#. An incomplete
separation of such time scales into long (t@u), characteristic
(t;u), and short (t!u) time constants, respectively, lead
to a variety of additional dynamical effects. The existence
an intermediate regime between long and characteristic
scales may lead to dynamical bifurcations@2#. An intermedi-
ate regime between characteristic and short time scales
formally be accounted for by introducing correlations in t
noise, i.e., by the use of colored noise. Similar to the cas
dynamical bifurcations, one may expect a very different
fect of such correlated noise on the observed dynamic
comparison to white noise. Recently, the influence of
noise color on stochastic resonance@3#, on fluctuation-
induced transport@4#, on limit cycle and threshold behavio
of individual and coupled oscillators@5–7#, and on nonequi-
librium phase transitions@8# has been discussed in seve
papers. For more details on the effect of noise color on n
linear dynamical systems, see@9#.

Here we present a new point of view in this discussion
studying the effect of colored noise on spatiotemporal clu
formation. Throughout the paper, we consider exponenti
correlated Gaussian noise as a model for fluctuations. Wi
this model, the term ‘‘noise color’’ denotes the correlati
time t. It is seen that the homogeneity of patterns~or the
average cluster size! in a system of coupled nonlinear diffe
ential equations strongly depends on the temporal correla
of additive, spatially incoherent noise. For chaotic networ
an increased correlation timet increases the homogeneity o
patterns, whereas in the nonchaotic case, a clear minimu
the homogeneity at intermediatet is observed. In addition to
being a novel phenomenon in the study of nonlinear n
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works under the influence of noise, this effect may be
relevance for applications in life sciences, as it sugges
possible mechanism of pattern regulation.

We discuss this effect in two different two-dimension
square lattices, whose elements consist of diffusiv
coupled, noisy nonlinear oscillators, namely a system of
cillatory biochemical reactions with backward inhibition,
the following called the Thron system~cf. @10# for the single
oscillator and@11# for a square lattice of coupled oscillators!,

ẋi j 5
a

K1zi j
2xi j ,

ẏi j 5xi j 2yi j ,

żi j 5yi j 2
k1zi j

Km1zi j
1j i j ~ t !1Dz (

klPNi j

~zkl2zi j !, ~1!

and the Lorenz system~cf. @12# for the single oscillator and
@6# for a ring of coupled oscillators!,

ẋi j 5a~yi j 2xi j !,

ẏi j 5rxi j 2yi j 2xi j zi j 1j i j ~ t !1Dy (
klPNi j

~ykl2yi j !,

żi j 5xi j yi j 2bzi j , ~2!

both with 1< i , j <32. The neighborhoodNi j consists of the
four nearest neighbors of each element within the squ
lattice. For our choice of parameters, each uncoupled os
lator in Eqs. ~1! and ~2! undergoes a Hopf bifurcation a
(a,K,Km)5(0.1,0.001,0.001) for k150.46 and (a,b)

5(10,83 ) at r 524.74, respectively. In the following, we var
k1 and r, keeping the other parameters fixed. In both cas
the individual oscillators are coupled diffusively in one
their dynamical variables with diffusion constantsDz for the
Thron system andDy for the Lorenz system. The quantit
j i j (t) is spatially incoherent, exponentially correlated ad
©2001 The American Physical Society05-1
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tive Gaussian noise, generated through an integral algor
@13# using an Ornstein-Uhlenbeck process with Gauss
white noise of varianceD. The resulting noise variablej i j (t)
has zero mean and the correlation function obeys the e
tion ^j i j (t)j i j (t8)&5Dt21exp(2ut2t8ut21), where t is the
correlation time andDt215s2 is the variance of the noise
Spatial incoherence means that the noise is uncorrel
from site to site, i.e.,̂ j i j (t)j i 8 j 8(t)&50. At this point, one
basically has two possibilities to investigate the effect
noise color in these systems, namely at fixeds2 and at fixed
D. While the latter leads to the correct white-noise limit, t
former procedure, which has also been used in, e.g.,@6#,
allows for approximately keeping the noise intensity const
~for finite t). We believe that this case is the relevant situ
tion for biological systems. In order to compare with oth
theoretical work, however, the case of constantD is more
important.

Equations~1! and~2! were numerically integrated using
Heun algorithm@7# with a step sizeDt51023 t.u. ~time
units!. Periodic boundary conditions were applied for bo
networks. The choice of the diffusively coupled dynamic
variable has been made mainly for the sake of compar
with previous work~i.e., Ref.@6# for the Lorenz system and
Ref. @11# for the Thron system!. However, we checked that
coupling in a different variable leads to the same effect.

We chose these two systems in order to give one exam
with explicit biochemical implications, and another that
somewhat standard in nonlinear dynamics in addition to h
ing a strong physical background in hydrodynamics and la
physics. Additionally, we performed the same analysis
the Sel’kov model of glycolysis@14#, for the Lorenz system
both being in a regime of regular limit-cycle oscillations~at
r .312), and for networks of driven double-well Duffing o
cillators, of driven excitable oscillators@15#, and of~chaotic!
Rössler oscillators. Fors25const, they all follow the same
scheme of response to noise color. On this basis, we are
to the conjecture that at fixeds2 the destructive effect with
increasing noise color on nonlinear networks in their nonc
otic regime, as well as the constructive influence in the c
otic case, represent a widely observable, possibly unive
phenomenon not restricted to some particular class of
tems. Our conjecture is supported by the plausibility ar
ments for the individual oscillator given below. We belie
that this effect is capable of providing insight into patter
formation processes in biological systems: On the basis
the view towards noise presented in the introductory par
this paper, it can be argued that colored noise should be
rule rather than an exception in a biological system, wh
dynamical processes on all time scales contribute more
less directly to the observed dynamics~for a specific biologi-
cal example, see@16#!. By discussing explicitly the influence
of colored noise on a network of biologically motivated o
cillators such as the Thron system, we provide a framew
for discussion of colored noise in life sciences.

The average synchronization between nearest neighbo
quantified using an inhomogeneity measureI @17#, which is
calculated in the following way:
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(
klPNi j

~zkl2zi j !
2G , ~3!

whereT is the length of the time series after the initial tra
sients have died off, andN is the number of network ele
ments. In addition to calculating the inhomogeneity, we d
termined the distribution of cluster sizes by applying t
Hoshen-Kopelman algorithm for cluster classification@18#.
The results of both procedures are in good agreement. N
that our means of quantification differ from Ref.@6#, where
the Euclidian distance in phase space has been used to q
tify synchronization. Keeping in mind that we discuss a
pects of spatiotemporal pattern formation, a quantification
just one dynamical variable seems more natural to us.
checked, however, that qualitatively the same results are
tained when one discusses synchronization, rather than i
mogeneity, as a function of the color. To calculate the noi
induced deviation from the deterministic limit-cycl
trajectory for one oscillator, we introduce the followin
quantity:

D5K Dt

tD
(
t50

tD

iuW det~ t !2uW sto~ t !i L
M

, ~4!

wherei i represents the Euclidian distance between the
terministic (uW det) and stochastic state vectors (uW sto) at timet.
The distance is zero att50. The bracketŝ &M denote aver-
aging overM different noise realizations for the fixed tim
interval tD . Dt is the integration step size (tD@Dt). Varying
tD over a considerable range leads to the same qualita
results for the dependence ont, even though the absolut
values ofD may differ substantially. Basically,D quantifies
the area in phase space accessible for the system in the
ence of noise at a given noise intensity and noise color.
increase ofD with t shows that a larger part of the pha
space is mapped out by the trajectories within a fixed ti
interval tD .

It is instructive to compare thet dependence observed i
the numerical simulations of the two systems, namely
regularly oscillating Thron system and the Lorenz system
its chaotic regime. To achieve a certain degree of comp
bility, the noise correlation timet is measured in units of the
dominating frequencyn0 in the power spectrum of the indi
vidual oscillator. In the case of the Thron system, one
n050.095 (t.u.)21, whereas for the Lorenz system one fin
n051.30 (t.u.)21.

For the Thron system, the results reported in Ref.@11# are
fully reproduced. However, in contrast to their claim, o
study of the spectrum of Lyapunov exponents for the coup
oscillators indicates that the time development is still regu
rather than chaotic. Indeed, calculation of the larg
Lyapunov exponents of the deterministic networks reveale
periodic, nonchaotic behavior for the Thron network for a
choice ofDz , k1.0.46, and a chaotic behavior, as it shou
be, for the Lorenz network forDy,0.16 with r .26.

The central result of our investigation is given in Fig.
There the inhomogeneityI @Eq. ~3!# is shown as a function o
the noise correlation timet. While the behavior is qualita-
5-2
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FIG. 1. The inhomogeneityI @Eq. ~3!# as a
function of tn0 for different values of the cou-
pling strength.D ands2 are held constant in the
first and second column, respectively.~a,b! Thron
system,a50.10, k150.49, K5Km50.001, n0

50.095 (t.u.)21; Dz is varied from 0.6~—! to
1.8 (-••-) in steps of 0.3.~c,d! Chaotic Lorenz
system, a510, b5

8
3 , r 528, s251.0, n0

51.30 (t.u.)21. Dy is varied from 0.15~—! via
0.17 ~- - -!, 0.20 (•••), 0.25 (-•-), to 0.30 (-•
•-). ~a! D50.02, ~b! s250.02, ~c! D51.0, ~d!
s251.0. The integration time wasT52500 t.u.
with a transient of 100 t.u. Five realizations hav
been performed, each time using a different s
quence of the attractor as well as different sets
random numbers for calculating the noise amp
tudes. Error bars denote standard deviations.
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tively the same atD5const @Figs. 1~a! and 1~c!#, we see
significant differences ats25const@Figs. 1~b! and 1~d!#. For
the Thron system,I shows a global maximum at some inte
mediatet. In contrast, an overall decrease in a relevant
gime oft is observed for the chaotic Lorenz system. In bo
cases, the effect is diminished when the coupling is
creased. For the Lorenz case, it is seen that an increase o
coupling constant fromDy50.15 to 0.25 is sufficient to al
most fully eliminate the dependence of the inhomogeneity
the color parametert. Our findings for the Lorenz system ar
in agreement with those discussed in@6# for the one-
dimensional case.

In Fig. 2, typical snapshots of the two systems are sho
for different values oft. The effect of varyingt on the
formation of patterns is clearly seen. The typical cluster s
shows a clear minimum at intermediatet for the Thron net-
02110
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work @Figs. 1~a!–1~c!#, whereas it increases witht in the
Lorenz case@Figs. 1~d!–1~f!#.

Some insight into the systematics of the functionI (t) is
gained when one compares the behavior seen in Fig.~d!
with the corresponding curve for the Lorenz system wh
varying the bifurcation parameterr ~Fig. 3!. At values below
the Hopf bifurcationr 524.74, one observes an increase oI
for tn0,0.1, similar to that of the Thron system. Howeve
in the chaotic regime of the network (r .26), this behavior
changes drastically, and one regains the functionI (t) from
Fig. 1~d!, with precisely the opposite global properties to th
of the Thron system. In order to understand the above p
nomena, it is worthwhile to look at the behavior of the ind
vidual oscillator under the influence of colored noise. It h
been shown in@19# that the effect of noise on limit-cycle
oscillations depends on the phase of the oscillation.
nt

in
FIG. 2. Snapshots of the networks of 32332
coupled Thron and Lorenz oscillators at differe
values oft keepings25const. Shown are thez
variables. ~a!–~c! The Thron system attn0

50.01,0.1,1,s250.02,Dz50.6.~d!–~f! The Lo-
renz system attn050.01,0.1,5, s251.0, Dy

50.15. Other parameters are the same as
Fig. 1.
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H. BUSCH, M.-TH. HÜTT, AND F. KAISER PHYSICAL REVIEW E64 021105
To quantify the perturbation of a trajectory as a functi
of s2 and t, the average distanceD @Eq. ~4!# between the
unperturbed trajectory in phase space and the trajectory
der the influence of noise is applied. Figures 4~a! and 4~b!
showD as a function of the correlation timet for the Thron
system and the chaotic Lorenz system, respectively.

Quite remarkably, on the level of the individual oscillato
no fundamental difference between the chaotic Lorenz s
tem and the oscillatory Thron system is observed. The
ference between the curves in Figs. 1~c! and 1~d! thus has to
be related either to a fully collective effect or to the interpl
between the collective and the single-oscillator respons
colored noise. For the case of the chaotic Lorenz oscilla
this interplay can partially be understood when one compa
thet dependence of the average distanceD from Fig. 4 with
the functionI (t) from Fig. 1. On the one hand, the diffusiv
coupling immediately exploits any~noise-induced! freedom
in the choice of the phase-plane trajectory, to synchron
with the neighboring oscillators. This is a collective effect,
it involves nearest-neighbor considerations and, clearly, it
duces the inhomogeneity. While for sufficiently large no
intensity this effect basically can be found for any value
the color parametert, owing to the properties of thesingle
oscillator shown in Fig. 4, this mechanism of synchroniz
tion is more relevant at highert, resulting in a decrease o
the inhomogeneityI as a function oft. This collective effect
is responsible for the global tendency ofI (t) to display an
overall decrease. On the other hand, the contribution of
individual oscillator tends to increase the inhomogeneity
the network, as its phase-space trajectory is less localize
higher t leading to the observed local maximum arou
tn051.0.

For the Thron network, the position of the maximum
Fig. 1~b! could be estimated by performing a similar analy
to the one in@19#. Within a single oscillation, a small time

FIG. 3. The inhomogeneityI as a function oftn0 for the Lorenz
system at different values ofr, while keepings2 constant. From top
to bottom: r 528, r 527, r 526, r 525, r 524.5, andr 520; Dy

50.15. Other parameters are the same as in Fig. 1~d!.
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interval Ds exists, when the system’s trajectory is perturb
most severely by noise. For colored noise, this results i
time scale matching betweent andDs. The position of the
maximum is given to a good approximation bytDs21'1.

Concluding, in the present paper it has been shown h
patterns in different two-dimensional networks of nonline
oscillators depend on the correlation time of external no
sources. All systems we investigated follow a characteri
scheme of response to colored noise: chaotic oscillati
lead to a decrease, regular oscillations lead to a maximum
the pattern’s inhomogeneity at intermediatet. As soon as
one accepts that a biological system itself may serve as
source of noise, e.g., via processes at faster time scales
the characteristic time of the studied system, colored no
has to be regarded as a frequent phenomenon in biolog
systems. It is by now well established that noise is functio
ally exploited in nature~see, e.g.,@20#!. In a similar way, the
regulation of patterns by noise color, as reported here, co
have a role in biological systems. Following this line
thought, one is led to a new view towards aspects of pat
formation~e.g., animal coating on the basis of a biochemi
switch! and developmental biology.

Several open questions remain. It has to be studied
more detail how coupling strength and noise amplitude
fluence this behavior. In addition, it would be worthwhile
systematically discuss the same effect in a network with

FIG. 4. The average distanceD @Eq. ~4!# between the perturbed
and unperturbed phase-space trajectories of the individual oscil
as a function oftn0 for different values ofs2. ~a! Thron system.s2

is varied from 0.01 (-••-) via 0.05 (-•-), 0.1 (•••), 0.5~- - -!, to 1.0
~—!, tD510.27 t.u., M5104. ~b! Chaotic Lorenz system.s2 is
varied from 0.5 (-••-) via 1.0 (-•-), 1.5 (•••), 2.0 ~- - -!, to 2.5
~—!, tD55.0 t.u., M5104. Other oscillator parameters are th
same as in Fig. 1.
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external periodic stimulus. Previous work indicates that
noise correlation parameter in such a driven network ha
strong effect on the network’s synchronization@21#.

Furthermore, the phenomenon reported here may pro
a method for distinguishing spatiotemporal chaos fr
~high-dimensional! noise. When probed by external colore
nd

ett

v.
,

d

02110
e
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noise, a system displaying chaotic spatiotemporal dynam
should give a very different response from that for a syst
with a regular behavior masked by an additional~internal!
noise. This approach, addressing the analysis of experime
data rather than the conceptual understanding of pattern
mation, needs further theoretical investigation.
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